Raydrop, a universal droplet generator based on a non-embedded co-flow-focusing
Overview
Most commercial microfluidic droplet generators rely on the planar flow-focusing configuration implemented in polymer or glass chips. The planar geometry, however, suffers from many limitations and drawbacks, such as the need of specific coatings or the use of dedicated surfactants, depending on the fluids in play. On the contrary, and thanks to their axisymmetric geometry, glass capillary-based droplet generators are a priori not fluid-dependent. Nevertheless, they have never reached the market because their assembly requires art-dependent and not scalable fabrication techniques. Here we present a new device, called Raydrop, based on the alignment of two capillaries immersed in a pressurized chamber containing the continuous phase. The dispersed phase exits one of the capillaries through a 3D-printed nozzle, placed in front of the extraction capillary for collecting the droplets. This non-embedded implementation of an axisymmetric flow-focusing is referred to co-flow-focusing.
In the context of a growing demand of controlled droplets in many areas, discover the Raydrop that emerges as a very robust and versatile solution easily implementable in laboratories with little experience and facilities in microfluidics.
What you will learn
- Introduction to droplet-based microfluidics
- Current method & technologies present on the market droplet & emulsion production
- Understand the advantages & challenges of droplet-based microfluidics
- Discover a new method for droplet and emulsion production
Who should attend
- People working on droplet and emulsion formation
- Researcher in droplet-based microfluidics
- Researcher on capillary based droplet generator

Resources to download
The webinar organizer has not yet made a document available. If you are registered for the webinar, you will be notified by email when a resource becomes available.